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Why Hadron Colliders

~ annihilation provides a clean environment

Center-of-mass energy known
All energy goes into creation of new particles
Coupling to all objects with charge with rates o ¢
o But electrons are light: large amount of radiation when they
are accelerated
» Difficult to make high energy colliders
» Largest /s achieved at LEP: 209 GeV
e Hadron colliders can acheive much higher energy
» Highest /s to date at LHC: 13 TeV

¢ In addition, hadron collisions provide direct access to gluons
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Phenomonology of Hadron Collisions

o Cross section dominated by soft processess

e Low momentum transfer —cannot describe bulk of cross
section using perturbative QCD

As with fragmentation, use phenomenological models

Qualitative features:

» Limited pr wrt beamline
» Longitudinal momentum distribution dominated by phase space

Expectations particle production in soft interactions same as
what we saw in eTe™ hadronization:
» Multiplicity rises ~ In(s)
» Particle production flat in rapidity (measured wrt beamline)
e Since particle mass not measured, replace with angular
variable
e Pseudorapidity n = —In(tan(0/2))
Same expression you saw in hw # 5

» Spectrum falls rapidity with pp



Characterizing the soft physics: “Minimum Bias" events
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e dN/dpT falls exponentially for low /s
® As /s increase, high tail develops

Onset of hard scattering!



Underlying Event and Hard Scattering

* Hard Collision leaves remnants of incoming p's moving

in Beam Direction /
L —— —
e
w

* “Initial State” gluon radiation largely co-linear with
incoming partons: same basic structure

“Hard" Scattering
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Undexlying Event

Soft particles distributed
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Calculating Hard Scattering Cross Sections
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® & calculated using QCD
e f(z), D(z) measured in reference processes;

Exhibit scaling violations: F(x, ), D(z,u’)

® Note: example here is 2 — 2 scattering; 2 — 1 and 2 — N also possible



Hard Scattering: General Observations

Two “beam jets” plus high pr objects
e Hard Scattering

» § = x,x,s where x's are the fraction of the hadron momenta
carried by the iteracting partons

» pp in general is well measured

» pz can be large. Usually not well
measured directly (losses down the beampipe)

» Cross sections for hard scattering can be calculated using
perturbative QCD

e Beam Jets: “Underlying Event”
» Limited pr wrt beamline
» Looks alot like soft events
» Presence of hard scatter — larger pp
overlap, so mean pr and multiplicity somewhat higher



Examples of Hard Scattering Processes

o Elastic Scattering e Annihilation

99 — 99, 99 — 94, 49 — qq., €tc _ N o
qq — qq, qq — {70, qqg > W,
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e Compton Scattering W+

99 — 949, 99 — g7, €tc
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Predicted Cross Sections

proton - (anti)proton cross sections ® Rates determined by
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How well do these calculations do?

Standard Model Production Cross Section Measurements

Status: March 2015
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Experimental Details (LHC example)

® Something happens every beam
crossing

> 24 inelastic events/crossing at
103* cm—2s~1 “Pile-up”
® Must select events of interest:
Trigger
» Must know what you throw out
> Analysis must be trigger-aware

® Jets dominate hard scattering rate

> Can isolate EW processes only
if they have something besides
jets, eg leptons

> Jets are a potential source of
background to leptons “fakes”

»> Detector mis-measurements

can induce false signals

e W, Z: Background for Top,
Higgs, SUSY

® Top: Background for many SUSY
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Analysis Strategy: Begin with the largest cross section and

work down

® Characterize bulk of cross section “soft physics”
> Tracks

® |dentify dominant 2 — 2 QCD processes
> Jets

® Develop strategies for selecting EW processes
>oe vy

® Reconstruct heavy objects produced strongly
> Top

® Understand discovery potential for low rate EW processes
» Dibosons
> Higgs

® Develop strategies to look for new physics (BSM)



transverse

60° < |AG] < 120°

® | ook away from the hard scattering
products (jets or leptons)
> Eg, 90° from jets in a dijet
event

® Particle multiplicity almost
independent of jet pp

® Remnants of the inital hadrons
moving down beamline with limited
pr with respect to beam direction

MOData <5p; / n 5> [GeV]

<N / 81 3¢>

MC/Data

Herwige+ UET-2 MRST LO™
Herwig + Jimmy AUET2 LO*
Alpgen + Herwig + Jimmy AUET1
Powheg + Pythiat

Perugia 2011

ATLAS

L, =37pb1s=7TeV
Transverse region
Exclusive dijet

Lilalilal

20 30 40 100 200 300
pr* [GeV]
2T s avecrio ATLAS
Pyihias Perugia 2011 L, =37pb" 15 =7 TeV
Pyihias DW
Herwaeo Uer 2 nst Lo Transverse region
Alpgen + Herwig + Jimmy AUET1 Exclusive dijet
Powheg + Pyihiaé Perugla 201

|

[T AT T ST A RRRU R TU RRRU AN

100

200 300

pr [GeV]



QCD Jets

proton / ‘ jet

antiproton \ ‘jet

e Strategy:
» Calorimeter based pattern recognition
» Associate tracks with jets after calorimeter jets found



First Evidence for Jets in Hadron Colliders (UA2, 1982)
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Evidence for the non-abelian nature of the gluon

® Elastic parton-parton scattering 100 T T T
UA1
® t-channel exchange of a gluon ® 545 GV 1982 JET Trigger

W 630 GeV 1984 MB Trigger
.. © 900 GeV 1982 MB Trigger
® All 3 processes have similar Feynman 10 — Duko Owons 107 =200GoV? | |
— — Duke Owens 102 = 2000 GeV 2

diagrams
> Different quark and gluon n
color charge
> Different quark and gluon PDFs F ()
> Define an “single effective

subprocess” PDF o

F@) = G@)+s Q@) +Q@@) oo

® Clear evidence for gluon scattering 0001 - 3 02 o5 o6

TIP-01555



Angular Distribution

® t-channel pole leads to angular

distribtion
do 2. 1
=aZls
d cos 0* 1 — cos20*

® Rutherford-like shape with divergence
in beam direction

® Change variables

1+ cos 6*

X= 1 — cos 6%

Distribution is approximately
constant for x > 2
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Figure 9 The distribution of 7 for two-jet events as measured by the UAI collaboration.
The curve shows the predictions of & lowestorder two-parton saatiering QCD cakculation,
with and without contributions due to QCD scaling violations.



What do jets look like at the LHC?
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State of the Art: Theory and Experime

® Hard scattering cross section at NLO or multileg (your choice)

> Estimate uncertainties by evaluating dependence of calculation on choice

of scale
® \Well measured PDFs
® Jet finding algorithms that are infra-red and colinear safe

® Evaluation of non-perturbative effects through the use of Monte Carlo
generators

> Independent generators and generator tunes to assess systematic

uncertainties
® Careful in-situ calibration of jet energy

e Corrections for pileup (multiple collisions in one beam crossing)



Can the theorists predict the cross section?
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How about 3 jets?
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Using dijet angular distribution to look for new physics
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® | ook for new resonance that decays

to jets

> Signal is a peak in dijet
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p-value = 0.79
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